导读 参见百度百科“勾股定理”证法5 证法5(欧几里得) 《几何原本》中的证明 在欧几里得的《几何原本》一书中提出勾股定...
参见百度百科“勾股定理”证法5 证法5(欧几里得) 《几何原本》中的证明 在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。
设△ABC为一直角三角形,其中A为直角。
从A点划一直线至对边,使其垂直于对边上的正方形。
此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
在正式的证明中,我们需要四个辅助定理如下: 如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。
(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。
任意一个正方形的面积等于其二边长的乘积。
任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。
证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。