首页 精选百科 > 正文

平方平均大于算术平均的证明(平方平均数大于算术平均数证明)

导读 调和平均数≤几何平均数≤算术平均数≤平方平均数.就是 1/[(1/a+1/b)/2]=√a-√b是任意实数 --->(√a-√b)^2>=0 --->a+b-2√(ab)>=0 --...

调和平均数≤几何平均数≤算术平均数≤平方平均数.就是 1/[(1/a+1/b)/2]=<√(ab)=<(a+b)/2=<√[a^2+b^2)/2] (a>0,b>0) 证明: 1)几何平均数=<算术平均数<-->√(ab)=<(a+b)/2.......(*) a>0,b>0--->√a-√b是任意实数 --->(√a-√b)^2>=0 --->a+b-2√(ab)>=0 --->a+b>=2√(ab) --->√(ab)=<(a+b)/2 2)(*)--->a+b>=2√(ab) --->2ab=<(a+b)√(ab) --->2ab/(a+b)=<√(ab) --->1/[(1/a+1/b)/2]=<√(ab)......(**)调和平均数=<几何平均数 3)(a-b)^2>=0--->a^2+b^2>=2ab --->a^2+b^2+2ab=<2(a^2+b^2) --->2(a+b)^2=<4(a^2+b^2) --->[(a+b)/2]^2>=(a^2+b^2)/2 --->(a+b)/2=<√[(a^2+b^2)/2]......(***)算术平均数=<平方平均数 证完.。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。