首页 综合精选 > 正文

x(arctanx)²不定积分(求x(arctanx)的不定积分)

导读 分部积分法:∫vdu=uv-∫udv∫x*arctanx dx=∫arctanx d(x²/2)=x²/2*arctanx-∫x²/2 d(arctanx)=1/2*x²arctanx-1/2*∫x²/(1+x²) d...

分部积分法:∫vdu=uv-∫udv∫x*arctanx dx=∫arctanx d(x²/2)=x²/2*arctanx-∫x²/2 d(arctanx)=1/2*x²arctanx-1/2*∫x²/(1+x²) dx=1/2*x²arctanx-1/2*∫[1-1/(x²+1)] dx=1/2*x²arctanx-1/2*(x-arctanx)+C=1/2*x²arctanx-x/2+1/2*arctanx+C=(1/2)[(x²+1)arctanx-x]+C。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。