图形的全等 -------------------------------------------------------------------------------- 一、一周知识概述 了解全等形、全等三角形的概念及表示方法,掌握寻找全等三角形中的对应元素的基本方法,初步会用全等三角形的性质进行一些边角的简单的计算. 1.全等三角形的定义及有关概念和性质. (1)全等三角形是能够完全重合的两个三角形或形状相同、大小相等的两个三角形.形状相同但不能完全重合的两个三角形不是全等三角形。
(2)全等三角形对应元素及性质:全等三角形的对应边相等,对应角相等. (3)将两个全等三角形中的一个三角形平移、翻折、旋转可得到另一个三角形. 2.全等三角形的符号表示及读法和写法. 全等三角形用符号“≌”表示,表示全等,读作“全等于”,注意对应顶点写在对应位置上.将两个三角形的顶点同时按1→2→3→1的顺序轮换,可写出所有对应边和对应角相等的式子,而不会找错,并节省观察图形的时间. 如图,∵△ABC≌△DFE,(已知) ∴AB=DF,AC=DE,BC=FE,(全等三角形的对应边相等) ∠A=∠D,∠B=∠F,∠C=∠E.(全等三角形的对应角相等) 二、重点和难点 重点:全等三角形的性质 全等三角形的对应边相等,对应角相等. 难点:寻找全等三角形的对应元素 常用的寻找全等三角形对应元素的方法. 已知如图中的(a),△ABC≌△DEF,则对应边和对应角相等。
AB=DE,AC=DF,BC=EF.∠A=∠EDF,∠B=∠E,∠ACB=∠DFE。
有公共边的,公共边一定是对应边,如图中的(b),(e),(g);有公共角的,公共角一定是对应角,如图中的(f). 有对顶角的,对顶角一定是对应角,如图中的(d),(f),(g). 练习1:已知如图中的(c),△ABC≌ADE, AB=AD,∠1=∠2,AC=AE.写出其余对应元素相等的式子. 练习2:已知:如图中的(h),△AEB≌△DFC,∠1=∠2,BE=CF,∠B=∠C,写出其余对应元素相等的式子. 找对应边、对应角通常有以下几种方法. (1)全等三角形对应相等的角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应相等的边所对的角是对应角,两条对应边所夹的角是对应角. (3)两个全等三角形有公共边的,公共边一定是对应边. (4)两个全等三角形有公共角的,公共角一定是对应角. (5)两个全等三角形有对顶角的,对顶角一定是对应角. (6)两个全等三角形中一对最长的边(或最大角)是对应边(或对应角),一对最短的边(或最小的角)是对应边(或角). 如图,复杂的几何图形,实际上常常可以看作简单图形的组合,我们要把简单图形从复杂图形中分离出来,确定对应的概念,加深对概念的理解,把复杂的几何问题转化成简单问题,这就是数学中的转化思想的体现. 三、典型例题分析 例几何中,我们把上述所例举的“一模一样”的图形叫做“全等形”,以下是描述全等形的三种不同的说法,你认为哪种说法是恰当的? (l)形状相同的两个图形叫全等形。
(2)大小相等的两个图形叫全等形。
(3)能够完全重合的两个图形叫全等形。
答: 全等形要满足两个基本条件:两个图形的形状完全相同和大小完全相同,所以(3)正确。
例2、如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C= 20°,AB=10,AD= 4, G为AB延长线上一点.求∠EBG的度数和CE的长. 分析: (1)图中可分解出四组基本图形:有公共角的Rt△ACD和Rt△ABE;△CEF≌△BDF,△ABE的外角∠EBG或∠ABE的邻补角∠EBG. (2)利用全等三角形的对应角相等性质及外角或邻补角的知识,求得∠EBG等于160°. (3)利用全等三角形对应边相等的性质及等量减等量差相等的关系可得:CE=CA-AE=BA-AD=6. 点评: 全等形中对应的局部相等,所以全等三角形的对应角和对应边分别相等.要证角相等或线段相等,只需它们分别是全等三角形的对应角或对应边,判断全等三角形角的对应关系的关键是判定三角形顶点的对应关系.这是今后证明类似问题的重要思路. 寻找全等三角形的对应关系,首先要根据已知的相等关系(或对应关系)确定对应顶点. 通过观察图形,可以把其中一个图形经过平移、旋转、翻折后和另一个图形重合.于是又可以由观察直接判断对应关系.上面例子左图可由先旋转再平移而重合,右图可由先平移再翻折而重合. 直角三角形全等的条件: 一直角边的角平分线交汇另一直角边形成一个小直角三角形,在这对小的直角三角形中,一直角边和斜边相等,所以这小的直角三角形全等(斜边直角边定理),所以被平分的角也相等. 被平分的角相等,同样这平分的大角也相等,这样在两个大直角三角形中,一直角边相等,一对应的角又相等,那么这两个大直角三角形也同样全等. 斜边与其中一条直角边对应相等,称为“斜边、直角边”,简写为HL。
这样的直角三角形也全等。
正方形:C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2、正方体:V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5、三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6、平行四边形:s面积 a底 h高 面积=底×高 s=ah 7、梯形:s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形:S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9、圆柱体:v体积 h:高 s底面积 r底面半径 c底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10、圆锥体:v体积 h高 s底面积 r底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2、封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月 平年 2月28天, 闰年 2月29天 平年全年365天, 闰年全年366天 1日=24小时 1小时=60分 1分=60秒 1小时=3600秒 小学数学几何形体周长 面积 体积计算公式 长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a 3、长方形的面积=长×宽 S=ab 4、正方形的面积=边长×边长 S=a.a= a 5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高 S=ah 7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 10、圆的面积=圆周率×半径×半径。